Produces a logistic fit plot with a facettable exposures/quantiles/distributions in ggplot2
Usage
gglogisticexpdist(
data = effICGI,
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
color_fill = "DOSE",
logistic_by_color_fill = FALSE,
exposure_metrics = c("AUC", "CMAX"),
exposure_metric_split = c("median", "tertile", "quartile", "none"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution = c("distributions", "lineranges", "none"),
exposure_distribution_percent = TRUE,
exposure_distribution_percent_text_size = 5,
dose_plac_value = "Placebo",
xlab = "Exposure Values",
ylab = "Probability of Response",
points_alpha = 0.2,
points_show = TRUE,
prob_obs_byexptile = TRUE,
prob_obs_byexptile_group = "none",
prob_text_size = 5,
prob_obs_bydose = TRUE,
prob_obs_bydose_plac = FALSE,
Nresp_Ntot = TRUE,
Nresp_Ntot_ypos = c("with percentages", "top"),
Nresp_Ntot_sep = "/",
binlimits_show = TRUE,
binlimits_text_size = 5,
binlimits_ypos = 0,
binlimits_color = "gray70",
dist_position_scaler = 0.2,
dist_offset = 0,
dist_scale = 0.9,
lineranges_ypos = 0.2,
lineranges_dodge = 0.15,
lineranges_doselabel = FALSE,
proj_bydose = TRUE,
yproj = TRUE,
yproj_xpos = 0,
yproj_dodge = 0.2,
yaxis_position = c("left", "right"),
facet_formula = NULL,
theme_certara = TRUE,
return_list = FALSE
)
Arguments
- data
Data to use with multiple endpoints stacked into response (values 0/1), Endpoint(endpoint name)
- response
name of the column holding the response values 0/1
- endpoint
name of the column holding the name/key of the endpoint default to
Endpoint
- DOSE
name of the column holding the DOSE values default to
DOSE
- color_fill
name of the column to be used for color/fill default to DOSE column
- logistic_by_color_fill
logistic fit split by color ? default
FALSE
- exposure_metrics
name(s) of the column(s) to be stacked into
expname
exptile
and split intoexposure_metric_split
- exposure_metric_split
one of "median", "tertile", "quartile", "none"
- exposure_metric_soc_value
special exposure code for standard of care default -99
- exposure_metric_plac_value
special exposure code for placebo default 0
- exposure_distribution
one of distributions, lineranges or none
- exposure_distribution_percent
show percent of distribution between binlimits
TRUE
/FALSE
- exposure_distribution_percent_text_size
distribution percentages text size default to 5
- dose_plac_value
string identifying placebo in DOSE column
- xlab
text to be used as x axis label
- ylab
text to be used as y axis label
- points_alpha
alpha transparency for points
- points_show
show the 0/1 observations
TRUE
/FALSE
- prob_obs_byexptile
observed probability by exptile
TRUE
/FALSE
- prob_obs_byexptile_group
additional grouping for exptile probabilities default
none
- prob_text_size
probability text size default to 5
- prob_obs_bydose
observed probability by dose
TRUE
/FALSE
- prob_obs_bydose_plac
observed probability by placebo dose
TRUE
/FALSE
- Nresp_Ntot
show N responders/Ntotal ?
TRUE
/FALSE
- Nresp_Ntot_ypos
y position for N responders/Ntotal two text elements the first for by exptile and the second for by dose/color options include
with percentages
top
bottom
- Nresp_Ntot_sep
character string to separat N responders/ Ntotal default
/
- binlimits_show
show the binlimits vertical lines
TRUE
/FALSE
- binlimits_text_size
binlimits text size default to 5
- binlimits_ypos
binlimits y position default to 0
- binlimits_color
binlimits text color default to "gray70"
- dist_position_scaler
space occupied by the distribution default to 0.2
- dist_offset
offset where the distribution position starts default to 0
- dist_scale
scaling parameter for ggridges default to 0.9
- lineranges_ypos
where to put the lineranges -1
- lineranges_dodge
lineranges vertical dodge value 1
- lineranges_doselabel
TRUE
/FALSE
- proj_bydose
project the probabilities on logistic curve
TRUE
/FALSE
- yproj
project the probabilities on y axis
TRUE
/FALSE
- yproj_xpos
y projection x position 0
- yproj_dodge
y projection dodge value 0.2
- yaxis_position
where to put y axis "left" or "right"
- facet_formula
facet formula to be use otherwise
endpoint ~ expname
- theme_certara
apply certara colors and format for strips and default colour/fill
- return_list
What to return if True a list of the datasets and plot is returned instead of only the plot
Examples
# Example 1
library(ggplot2)
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI))|>
dplyr::filter(!is.na(AUC))
effICGI$DOSE <- factor(effICGI$DOSE,
levels=c("0", "600", "1200","1800","2400"),
labels=c("Placebo", "600 mg", "1200 mg","1800 mg","2400 mg"))
effICGI$STUDY <- factor(effICGI$STUDY)
effICGI$ICGI2 <- effICGI$ICGI
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI,ICGI2)
gglogisticexpdist(data = effICGI |>
dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution ="distributions",
yproj_xpos = -15,
yproj_dodge = 10,
dist_position_scaler = 0.1,
dist_offset = -0.1,
Nresp_Ntot_ypos = c("with percentages","bottom"),
prob_obs_bydose_plac = FALSE,
prob_obs_byexptile_group = "none",
binlimits_ypos = -0.08,
points_alpha= 1)
#> Joining with `by = join_by(loopvariable, DOSE, quant_10)`
#> Joining with `by = join_by(loopvariable, DOSE, quant_90)`
#> Joining with `by = join_by(loopvariable, DOSE, quant_25)`
#> Joining with `by = join_by(loopvariable, DOSE, quant_75)`
#> Joining with `by = join_by(loopvariable, DOSE, medexp)`
#> `geom_smooth()` using formula = 'y ~ x'
#> `geom_smooth()` using formula = 'y ~ x'
#> Picking joint bandwidth of 11.7
#> Warning: Removed 244 rows containing non-finite outside the scale range
#> (`stat_density_ridges()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_pointrange()`).
# Example 2
gglogisticexpdist(data = effICGI |>
dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("CMAX"),
exposure_metric_split = c("tertile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution ="lineranges",
lineranges_ypos = -0.2,
lineranges_dodge = 0.2,
prob_obs_bydose = TRUE,
yproj_xpos = -1,
yproj_dodge = 2,
dist_position_scaler = 0.1)
#> Joining with `by = join_by(loopvariable, DOSE, quant_10)`
#> Joining with `by = join_by(loopvariable, DOSE, quant_90)`
#> Joining with `by = join_by(loopvariable, DOSE, quant_25)`
#> Joining with `by = join_by(loopvariable, DOSE, quant_75)`
#> Joining with `by = join_by(loopvariable, DOSE, medexp)`
#> `geom_smooth()` using formula = 'y ~ x'
#> `geom_smooth()` using formula = 'y ~ x'
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_pointrange()`).
if (FALSE) { # \dontrun{
#' # Example 3
library(ggh4x)
gglogisticexpdist(data = effICGI |>
dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="distributions",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 0.15)+
facet_grid2(Endpoint~expname+DOSE2,scales="free",
margins = "DOSE2",strip = strip_nested())
# Example 4
effICGI$SEX <- as.factor(effICGI$SEX)
gglogisticexpdist(data = effICGI |>
dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
color_fill = "SEX",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="distributions",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
lineranges_ypos = -0.2,
yproj_xpos = -10,
yproj_dodge = 20,
prob_text_size = 6,
binlimits_text_size = 6,
Nresp_Ntot = TRUE,
dist_position_scaler = 0.15)+
ggplot2::scale_x_continuous(breaks = seq(0,350,50),
expand = ggplot2::expansion(add= c(0,0),mult=c(0,0)))+
ggplot2::coord_cartesian(xlim = c(-30,355))+
ggplot2::facet_grid(Endpoint~expname+color_fill2, margins ="color_fill2" )
#Example 4b
effICGI$SEX <- as.factor(effICGI$SEX)
gglogisticexpdist(data = effICGI |>
dplyr::filter(Endpoint =="ICGI"),
response = "response",
endpoint = "Endpoint",
color_fill = "SEX",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 1, dist_offset = -1 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="lineranges")
#Example 5
gglogisticexpdist(data = effICGI |> dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="distributions",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 0.15)+
facet_grid(Endpoint~expname+exptile,scales="free",
margins = "exptile")
#Example 6
a <- gglogisticexpdist(data = effICGI, #
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",yproj_dodge = 36,
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="lineranges",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0) +
facet_grid(Endpoint~expname,switch = "both")
b <- gglogisticexpdist(data = effICGI, #
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",yproj_dodge = 2,
exposure_metrics = c("CMAX"),
exposure_metric_split = c("quartile"),
exposure_distribution ="lineranges",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
yaxis_position = "right")+
facet_grid(Endpoint~expname,switch = "x")+
theme(strip.text.y.right = element_blank(),
strip.background.y = element_blank())
library(patchwork)
(a | b ) +
plot_layout(guides = "collect", axes = "collect_x")&
theme(legend.position = "top")
#Example 7
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI))|>
dplyr::filter(!is.na(AUC))
effICGI$DOSE <- factor(effICGI$DOSE,
levels=c("0", "600", "1200","1800","2400"),
labels=c("Placebo", "600 mg", "1200 mg","1800 mg","2400 mg"))
effICGI$STUDY <- factor(effICGI$STUDY)
effICGI$ICGI2 <- ifelse(effICGI$ICGI7 < 4,1,0)
effICGI$ICGI3 <- ifelse(effICGI$ICGI7 < 5,1,0)
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI,ICGI2,ICGI3)
effICGI$endpointcol2 <- effICGI$Endpoint
gglogisticexpdist(data = effICGI,
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("median"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
color_fill = "endpointcol2",
prob_obs_byexptile = FALSE,
logistic_by_color_fill = TRUE,
Nresp_Ntot = TRUE,
exposure_distribution ="distributions",
lineranges_doselabel = TRUE,
prob_obs_bydose = TRUE,
proj_bydose = FALSE,
yproj = FALSE,
dist_position_scaler = 0.1,
dist_offset = -0.1)+
facet_grid(expname~.,scales="free_x")
} # }