pediatricdemogs$AUCMG00 <- 0.6*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG01 <- 0.65*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG02 <- 0.70*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG03 <- 0.75*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG04 <- 0.80*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG05 <- 0.85*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG06 <- 0.90*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG07 <- 0.95*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG08 <- 1.00*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG09 <- 1.05*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG10 <- 1.10*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG11 <- 1.15*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG12 <- 1.20*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG13 <- 1.25*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG14 <- 1.35*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG15 <- 1.40*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG16 <- 1.45*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG17 <- 1.50*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG18 <- 1.55*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG19 <- 1.60*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG20 <- 1.65*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG21 <- 1.70*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG22 <- 1.75*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG23 <- 1.80*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG24 <- 1.90*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogs$AUCMG25 <- 2.00*pediatricdemogs$DOSEMG/pediatricdemogs$CLi
pediatricdemogslong<- pediatricdemogs %>%
gather(key,value,AUCMG00:AUCMG25)%>%
group_by(key) %>%
mutate(medauc = median(value))%>%
mutate(dosemgkg=round(value*CLi/DOSEMG,2 ))
pediatricdemogslong <- pediatricdemogslong %>%
mutate(filldensity = case_when(value < 5 ~ "a.below",
value >= 5 & value <= 10 ~ "b.within",
value > 10 ~ "c.above"))
percentages<- pediatricdemogslong %>%
group_by(key) %>%
summarize(nvalues = length(value),
a.below = length(value[value<5])/nvalues,
b.within = length(value[value>=5 & value<=10])/nvalues,
c.above = length(value[value>10])/nvalues,
dosemgkg = mean(dosemgkg),
medauc = median(medauc))
percentages$utility <-
(1*(1-percentages$a.below)+
+2*(percentages$b.within)+
4*(1-percentages$c.above))/(1+2+4)
percentages$dosemgy <- percentages$dosemgkg
percentageslong <- percentages%>%
gather(TA,percentage,
`a.below`,`b.within`,`c.above`,utility,dosemgy,
factor_key = TRUE)
percentageslong$label <- ifelse(percentageslong$TA=="dosemgy", percentageslong$percentage/100,
percentageslong$percentage)
percentageslong$percentage <- ifelse(percentageslong$TA=="dosemgy",1,
percentageslong$percentage)
percentageslongfiltered <- percentageslong %>%
filter(dosemgkg %in% c(0.6,1,2))%>%
filter(!TA%in%c("utility","dosemgy")) %>%
arrange(dosemgkg) %>%
mutate(xpos= ifelse(TA=="a.below",3,
ifelse(TA=="c.above",20,7.5)))
ggplot(pediatricdemogslong %>%
filter(dosemgkg %in% c(0.6,1,2)))+
annotate(geom="text",x=1,y=1, col ="#7059a6",label="5 mg/kg ×",
vjust =0,hjust = 0, alpha=0.5)+
geom_vline(xintercept = 5 , linetype ="dashed")+
geom_vline(xintercept = 10 , linetype ="dashed")+
geom_density(aes(x = value,
group = key,
y=after_stat(scaled),
fill = after_stat(
case_when(x < 5 ~ "a.below",
x >= 5 & x <= 10 ~ "b.within",
x > 10 ~ "c.above"))),alpha=0.2,
color ="transparent") +
geom_text(data=pediatricdemogslong %>%
filter(dosemgkg %in% c(0.6,1,2))%>%
distinct(key,dosemgkg,medauc),
aes(x=medauc,y=1,label=as.factor(dosemgkg)),
col ="#7059a6", vjust =0, alpha = 0.5)+
geom_text(data= percentageslongfiltered,
aes(x=xpos,y=percentage ,label=round(100*percentage,1),
col = TA), vjust =0, alpha = 0.5,show.legend = FALSE)+
labs(fill="",y="Normalized AUC Densities",x="AUC (log scale)")+
scale_fill_manual(values=c("#4682AC",
"#336343", "#EE3124", "#FDBB2F", "#7059a6", "#803333"))+
scale_color_manual(values=c("#4682AC",
"#336343", "#EE3124", "#336343", "#7059a6", "#803333"))+
facet_grid(dosemgkg~.,switch="y")+
scale_x_log10(breaks =c(1,3,5,10,20,30))+
scale_y_continuous(labels = scales::percent)+
coord_cartesian(ylim=c(0,1.1),xlim =c(1,30))+
theme_bw(base_size = 16)+
theme(legend.position = "inside",
legend.position.inside = c(0.9,0.7),
legend.background = element_blank(),
strip.background = element_rect(fill = "#475c6b"),
strip.text.y.left = element_text(face = "bold",color = "white",angle=0),
strip.placement = "outside", axis.title.y.left = element_blank())